Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Roger D. Willett ${ }^{\text {a }}$ and Brendan Twamley ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Washington State University, Pullman, WA 99164, USA, and
${ }^{\text {b }}$ University Research Office, University of Idaho, Moscow, ID 83844, USA

Correspondence e-mail: willett@mail.wsu.edu

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.018 \AA$
R factor $=0.039$
$w R$ factor $=0.082$
Data-to-parameter ratio $=22.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Diethylammonium heptabromidedicadmium(II)

The trigonal compound, $\left(\mathrm{Et}_{2} \mathrm{NH}_{2}\right)_{3}\left[\mathrm{Cd}_{2} \mathrm{Br}_{7}\right]$, contains $\mathrm{Cd}^{\mathrm{II}}$ species with both tetrahedral and octahedral coordination. The $\left[\mathrm{CdBr}_{4}\right]^{2-}$ species exist as isolated anions, stabilized by hydrogen bonding from the diethylammonium cations. The octahedral species share faces, forming $\left[\mathrm{CdBr}_{3}\right]_{n}^{n-}$ chains parallel to the trigonal axis.

Comment

The structure of the title compound (I), as illustrated in Fig. 1, consists of a trigonal arrangement of columns of $\left[\mathrm{CdBr}_{3}\right]_{n}^{n-}$ chains of face-shared cadmium bromide octahedra and hydrogen-bonded stacks of stoichiometry $\left[(\mathrm{DEA})_{3} \mathrm{CdBr}_{4}\right]_{n}^{n+}$ (DEA is diethylammonium). The $\mathrm{Cd}^{\mathrm{II}}$ ions in the octahedra chains (Fig. 2) have $\overline{3}$ symmetry with $\mathrm{Cd}-\mathrm{Br}$ distances of 2.7848 (8) \AA for Cd 2 and 2.7837 (8) \AA for Cd3. The octahedra are slightly elongated along the trigonal axis with interior $\mathrm{Br}-$ $\mathrm{Cd}-\mathrm{Br}$ angles of $86.79(2)^{\circ}$. This leads to $\mathrm{Cd}-\mathrm{Cd}$ distances of 3.3888 (8) \AA. Fig. 3 illustrates the stacks of $\left[\mathrm{CdBr}_{4}\right]^{2-}$ tetrahedra hydrogen bonded by the DEA^{+}cations. Each cation bridges adjacent pairs of tetrahedra, forming two N3$\mathrm{H} \cdots \mathrm{Br} 2$ hydrogen bonds, with distances and angles given in Table 1. This forces short intra-tetrahedra $\mathrm{Cd} \cdots \mathrm{Br}$ distances of 4.1498 (19) \AA and contracts the $\mathrm{Br} 1 \cdots \mathrm{Cd} 1 \cdots \mathrm{Br} 2$ angle to $104.04(3)^{\circ}$. A packing diagram is shown in Fig. 4.

(I)

The crystal structure was determined as part of our longstanding interest in the the structure of diethylammonium halometallate(II) salts. $\left(\mathrm{Et}_{2} \mathrm{NH}_{2}\right)_{2}\left[\mathrm{CuCl}_{4}\right]$ exhibits thermochromism, changing from the green room-temperature form to a yellow high-temperature form at 330 K (Bloomquist et al., 1988; Simonsen \& Harlow, 1977). $\left(\mathrm{Et}_{2} \mathrm{NH}_{2}\right)_{2} \mathrm{Cu}_{3} \mathrm{Br}_{8}\left(\mathrm{CuBr}_{2}\right)$ contains planar $\left[\mathrm{Cu}_{3} \mathrm{Br}_{8}\right]^{2-}$ anions and neutral chains of edgeshared CuBr_{4} tetrahedra (Fletcher et al., 1983). $\left(\mathrm{Et}_{2} \mathrm{NH}_{2}\right)_{2}{ }^{-}$ $\mathrm{ZnCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}$ exhibits a phase transition at 320 K (Bloomquist \& Willett, 1981). A mixed-metal $\left(\mathrm{Et}_{2} \mathrm{NH}_{2}\right)_{4} \mathrm{CuCl}_{4} \mathrm{AlCl}_{4}$ species has also been reported (Martin \& Leafblad, 1998). $\left(\mathrm{Et}_{2} \mathrm{NH}_{2}\right)_{2}\left[\mathrm{CeCl}_{6}\right]$ contains isolated octahedrally coordinated $\mathrm{Ce}^{\mathrm{IV}}$ ions (Kiselev et al., 1979), while $\left(\mathrm{Et}_{2} \mathrm{NH}_{2}\right)_{3}\left[\mathrm{Ru}_{2} \mathrm{Cl}_{9}\right]$

Received 25 October 2001 Accepted 6 November 2001 Online 10 November 2001

Figure 1
A section of the extended structure of (I) with atom labels and 30% probability ellipsoids.
contains tribridged dimers formed by two face-shared octahedra (Efimenko et al., 1992).

The compound is isostructural with $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]_{3}\left[\mathrm{Mn}_{2} \mathrm{Cl}_{7}\right]$ (Caputo et al., 1976).

Experimental

An excess amount of diethylammonium chloride and $\mathrm{CdCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ in a 2:1 molar ratio in water were allowed to come to equilibrium. The crystalline needles formed were separated and one selected for structural investigation.

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}\right)_{3}\left[\mathrm{Cd}_{2} \mathrm{Br}_{7}\right]$
$M_{r}=1006.61$
Trigonal, $P \overline{3}$
$a=15.5665$ (11) \AA
$c=6.7777$ (6) A
$V=1422.31(19) \AA^{3}$
$Z=2$
$D_{x}=2.350 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 776 reflections
$\theta=2.6-18.6^{\circ}$
$\mu=11.33 \mathrm{~mm}^{-1}$
$T=297$ (2) K
Hexagon, colorless
$0.12 \times 0.09 \times 0.07 \mathrm{~mm}$

Figure 2
A view of the $\left[\mathrm{CdBr}_{3}\right]_{n}{ }^{n-}$ chain of face-shared cadmium bromide octahedra.

Figure 3
A view, parallel to [001], of the intermolcular hydrogen bonding, indicated by dashed lines. Only the H atoms involved in this bonding are shown. The DEA^{+}cations are shown in ball-and-stick format, the CdBr_{4} units have displacement ellipsoids at the 30% probability level.

Data collection

Siemens SMART 1K diffractometer ω scans
Absorption correction: empirical
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.343, T_{\text {max }}=0.504$
15545 measured reflections 1675 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.082$
$S=1.02$
1675 reflections
75 parameters
H -atom parameters constrained

1137 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-18 \rightarrow 18$
$k=-18 \rightarrow 18$
$l=-8 \rightarrow 8$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0288 P)^{2}\right. \\
& +3.3912 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.61 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.58 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0027 \text { (2) }
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{Br} 2^{\mathrm{i}}$	0.90	2.74	$3.556(8)$	151
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{Br} 2^{\mathrm{ii}}$	0.90	2.70	$3.555(8)$	160

Symmetry codes: (i) $1-y, x-y, z$; (ii) $1-y, x-y, 1+z$.

Figure 4
A packing diagram of (I) with intermolecular hydrogen bonding shown by dashed lines. For clarity, only the H atoms involved in intermolecular bonding are shown. Displacement ellipsoids are at the 30% probability level.

metal-organic papers

There is a high positive residual density of $1.61 \mathrm{e} \AA^{-3}$ near the Cd 1 center. It lies along the $\mathrm{Cd} 1-\mathrm{Br} 1$ vector.

Data collection: SMART (Bruker, 1997-1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: $X S$ in SHELXTL (Bruker, 1998); program(s) used to refine structure: $X L$ in $S H E L X T L$; molecular graphics: $X P$ in SHELXTL; software used to prepare material for publication: XCIF in SHELXTL.

References

Bloomquist, D. R., Pressprich, M. R. \& Willett, R. D. (1988). J. Am. Chem. Soc. 110, 7391-7398.
Bloomquist, D. R. \& Willett, R. D. (1981). Acta Cryst. B37, 1353-1356.

Bruker (1997-1998). SMART. Version 5.059. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SHELXTL (XCIF, XL, XP, XS). Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SADABS (Version 2.01) and SAINT-Plus (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA
Caputo, R. E., Roberts, S., Willett, R. D. \& Gerstein, B. C. (1976). Inorg. Chem. 15, 820-823.
Efimenko, I. A., Balakaeva, T. A., Kurbakove, A. P, Kanishcheva, A. S., Chuvaev, A. V., Stepanovich, V. M. \& Mikhailov, Yu. N. (1992). Zh. Neorg. Khim, 37, 1312-1319.
Fletcher, R., Hansen, J. J., Livermore, J. \& Willett, R. D. (1983). Inorg. Chem. 22, 330-334.
Kiselev, Yu. M., Brandt, A., Martynenko, L. I. \& Spitsyn, V. I. (1979). Dokl. Akad. Nauk. SSSR, 246, 879-884.
Martin, J. J. \& Leafblad, B. R. (1998). Angew. Chem. Int. Ed. 37, 3318-3320.
Simonsen, S. H. \& Harlow, R. L. (1977). Am. Crystallogr. Assoc. Ser. 2, 25.

